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Abstract

Field and laboratory investigators have observed thin, tabular zones of localized compressional deformation without
shear in high porosity sandstone. These �compaction bands� display greatly reduced porosity, and may affect the with-
drawal of fluids from reservoirs. Studies addressing band formation as a type of strain localization predict the onset of
the bands in a range of constitutive parameters roughly consistent with experiments, but are highly dependent on the
constitutive relation used. In particular, the hardening modulus in shear and the slope of the yield surface in a plot of
shear stress versus mean compressive stress are critical to localization predictions. Previous yield cap constitutive mod-
els employed a single deformation criterion, linking hydrostatic and shear response. In this work, we propose an elliptic
yield cap model employing separate inelastic deformation parameters along each axis of the ellipse. The two deforma-
tion parameters allow the proposed surface to change in aspect ratio as it deforms, and allow a negative hardening mod-
ulus in shear without a negative hydrostatic modulus. Some cases with simplified modeling are shown for illustrative
purposes, followed by a comparison with existing models. The proposed model displays similar strain behavior to
the other models, but predicts localization under less restrictive conditions.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Field observations of thin zones of localized compressional deformation without shear have been iden-
tified in high porosity sandstones. Mollema and Antonelli (1996) first referred to these structures as �com-
paction bands�. Olsson (1999) and Wong et al. (2001) were able to produce bands of localized compaction
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in laboratory sandstone samples. In these samples, the bands were oriented normal to the maximum com-
pressive stress direction. Similar deformation behavior has been observed in other porous materials, includ-
ing polycarbonate honeycombs (Papka and Kyriakides, 1998) and metallic foams (Park and Nutt, 2001;
Bastawros et al., 2000).

In laboratory samples, porosity within the bands was reduced by at least an order of magnitude (Olsson
et al., 2002; Klein et al., 2001) and significant grain breakage occurred (DiGiavanni et al., 2000; Baud et al.,
2004). Permeability within the band was generally strongly reduced (Holcomb and Olsson, 2003; Vajdova
et al., 2004). The reduction in porosity tends to reduce permeability, but grain fracture can create additional
fluid pathways (Fortin et al., in press; Zhu and Wong, 1996). Grain breakage within compaction bands may
contribute to borehole breakouts (Haimson, 2001, 2003). Thus, compaction bands in reservoirs may affect
the withdrawal of fluids or add particulate contaminants.

Olsson (1999) addressed compaction bands as a form of localization following the method of Rudnicki
and Rice (1975). Issen and Rudnicki (2000) determined the necessary conditions for the inception of com-
paction localization without shear along a cap surface. These studies predict the onset of the bands in a
range of constitutive parameters roughly consistent with experiments, but the predictions are highly depen-
dent on the constitutive relation used. Constitutive parameters important to the prediction of localization
include the plastic hardening modulus in shear, the slope of the yield surface, and the ratio of inelastic vol-
ume and shear strains. Materials that exhibit compaction localization can be modeled with a yield surface
in differential stress–mean compressive stress space similar to that shown in Fig. 1. Analyses predict, consis-
tent with experimental observations, that compaction localization is most likely to occur at high mean
stress, when the slope of the yield surface, l, is negative.

Critical state (Schofield and Wroth, 1968) and yield cap (DiMaggio and Sandler, 1971) models have been
commonly used for clays, soils, and high porosity rocks. At high hydrostatic stress, both models display
negative slope until the yield envelopes close in a plot of differential stress versus mean compressive stress
(see Figs. 2 and 3). In critical state models, the �cap� is a portion of a single yield surface. One deformation
parameter is used to model movement of the entire surface. Yield cap models have been used in conjunction
with separate surfaces modeling shear failure, intersecting at a yield corner (DiMaggio and Sandler, 1971;
Gu et al., 2001) or arranged to intersect smoothly (Fossum and Fredrich, 2000a). The cap surface is elliptic
when viewed in a plot of differential stress versus mean stress. Sliding of the cap surface is modeled using a
single deformation parameter. The single deformation parameter for both model types is generally fit to the
hydrostatic response of the material. The models have had success predicting strain behavior in axisymmet-
ric compression tests.

Recent tests performed in nontraditional stress paths (Olsson and Holcomb, personal communication)
do not fit the single parameter models well. In addition, unless the hydrostatic stress versus volume strain
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Fig. 1. Representation of a typical yield surface for a material that undergoes compaction localization. The region where the slope of
the yield surface, l, is negative is the �cap� portion of the yield surface. The yield surface closes across the mean compressive stress axis,
so inelastic response is predicted during hydrostatic compression. Compaction localization is usually observed along the lower mean
compressive stress portion of this �cap� surface.



Fig. 2. Layout for the Carroll model in differential stress versus mean stress coordinates. When loaded along the cap region, the peak
of the yield surface slides to the right along the critical state line, with slope m. The width, p*, remains constant. When loading reaches
the critical state at the cap peak, the surface remains stationary.
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Fig. 3. Layout for the DiMaggio and Sandler model. When loaded along the cap surface, the cap peak moves to the right along the
stationary shear surface. The aspect ratio, R, of the elliptical cap remains constant.
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response becomes flat, the models are unable to allow a plastic hardening modulus of zero in shear. This
prevents the prediction of compaction localization without non-associated flow. A more elaborate consti-
tutive model is needed, with the ability to fit deformation behavior in multiple stress paths and to allow a
separate plastic hardening modulus in shear. This new model will help assess whether compaction bands
can be accurately predicted as a form of localization using the Rudnicki and Rice method.

This paper introduces a more elaborate cap surface. First, for comparison, a brief description is given for
two current models: a critical state model proposed by Carroll (1991) for Boise sandstone and the DiMaggio
and Sandler (1971) cap model for McCormick Ranch Sand. After the predicted strain behavior and plastic
shear hardening moduli for these models are given for various loading paths, an elliptic quadrant cap sur-
face, with major and minor axes dependent upon separate deformation parameters, is defined. The modeling
is similar to that used by Deshpande and Fleck (2000) for metallic foam. The equations are reduced for some
simplified cases to show some allowable strain behaviors, including perfectly plastic behavior along either
axis. Localization predictions are defined for all three cap surfaces. All the models are compared in an exam-
ple with a hydrostatic response similar to that displayed by high porosity sandstone.
2. Background

2.1. Carroll model

Carroll (1991) proposed a type of critical state plasticity model using a parabolic yield surface when
viewed in differential stress, s, and mean stress, r, coordinates. Here, we use the second invariant of the
deviatoric stress as the measure of differential stress, defined as s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SijSij=2

p
, where Sij = rij � dijr. The

position of the parabolic vertex (pc,sc) is plastic volume strain dependent and the width, p*, is held constant
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due to micromechanical considerations (see Fig. 2). The vertex moves along the critical state line, with slope
m. The yield surface takes the form
F C ¼ 0 ¼ r � pc
p�

� �2

þ s
sc
� 1: ð1Þ
If the linear functions used in the original model are generalized, they become
sc ¼ sc0 þ mBðepÞ;
pc ¼ pc0 þ BðepÞ;

ð2Þ
where sc0 and pc0 are initial values and ep is the inelastic volume strain. Because associated flow is assumed,
the slope of the yield surface,
lc ¼ � 2scðr � pcÞ
p�2

ð3Þ
is equal to the dilatancy factor,
b ¼ �dep=dcp; ð4Þ
where cp is the Mises equivalent shear strain,
ffiffiffiffiffiffiffiffiffiffiffiffi
2epije

p
ij

q
, and epij ¼ epij � ð1=3Þdije

p
kk.

For stress states with r > pc, the �cap� portion of the surface, inelastic response is characterized by comp-
actant hardening. The yield surface slides to the right and grows as the vertex moves along the critical state
line. Once loading reaches the critical state line, the stress state is fixed at the peak of the parabola. Further
inelastic shear strain occurs without inelastic volume strain.

The deformation parameter, B, can be obtained during a hydrostatic test. Because the width of the yield
surface is held constant, dr = dpc along the hydrostat. Using the notation dr = khydrodep for the hydrostat,
where khydro is the hydrostatic plastic hardening modulus and khydro = B 0(ep), yields
ðdepÞC ¼ dpc
khydro

: ð5Þ
For non-hydrostatic stress paths, where ds = adr, the plastic strain response is determined by applying (2)
and (5) to the derivative of (1), resulting in
dr=dep
� �

c
¼ khydro

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� s

sc

r
þ smp�

s2c

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� s

sc

r
þ ap�

sc

: ð6Þ
Eq. (6) shows that as the ratio s/sc increases, the plastic strain response decreases from the hydrostatic re-
sponse, (dr/dep)c = khydro to ðdr=depÞc ¼

khydrom
a at the yield surface peak.

The volumetric plastic hardening modulus, k, is important in determining localization predictions, and is
defined as
k ¼ dr=dep
		
s¼const: ð7Þ
This volumetric form is more suitable for application on a cap surface than the traditionally used hardening
modulus in shear. For the Carroll model, the volumetric plastic hardening modulus is
kc ¼ khydro 1þ s
sc

m
jlcj

� �
: ð8Þ
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2.2. DiMaggio–Sandler model

DiMaggio and Sandler (1971) proposed a two surface model for McCormick Ranch Sand. The model
also has been used for other granular soils and rocks (Fossum and Fredrich, 2000b). The model implements
a stationary nonlinear dilatant yield surface at low hydrostatic stress and a hardening elliptic cap surface at
high hydrostatic stress (see Fig. 3). The surfaces intersect at the cap peak. If the function defining the dilat-
ant yield surface used in the original model is generalized as f(L), the cap surface takes the form
F DS ¼ 0 ¼ r � LðepÞ
Rf ðLÞ

� �2

þ s
f ðLÞ

� �2

� 1; ð9Þ
where R is the constant aspect ratio of the elliptical surface and (L, f(L)) is the point of intersection with the
dilatant surface in triaxial stress space. The hydrostatic hardening response determines the movement of L

as a function of ep. During inelastic response, the cap surface slides to the right while maintaining a con-
stant shape. The stress state is assumed to remain constant once loading reaches the dilatant yield surface at
the cap peak.

The deformation parameter can be obtained during a hydrostatic test. The aspect ratio is held constant,
thus dr = dL(Rf 0 + 1) along the hydrostat, where f 0 is the slope of the shear surface. Again using the nota-
tion dr = khydrodep for the hydrostat yields
ðdepÞDS ¼ dL
ðRf 0 þ 1Þ
khydro

: ð10Þ
The plastic strain response to nonhydrostatic stress paths, determined by inserting (10) into the derivative
of (9), is
dr=dep
� �

DS
¼ khydro

Rf 0 þ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s

f

� �2
s

þ Rf 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s

f

� �2
s

þ aR
s
f

0
BBBBB@

1
CCCCCA: ð11Þ
As the ratio s/f in (11) increases from zero, the plastic strain response decreases from the hydrostatic re-
sponse to ðdr=depÞDS ¼

khydrof 0

aðRf 0þ1Þ as it reaches the cap peak. The volumetric plastic hardening modulus is
kDS ¼
khydro
Rf 0 þ 1

1þ f
s

f 0

jlDSj

� �
; ð12Þ
where
lDS ¼ �ðr � LÞ
sR2

: ð13Þ
Associated flow is assumed for this model as well.
The parabolic surface for the Carroll Model remains at a constant width and varies in height, allowing a

straightforward fit to hydrostatic data, whereas the elliptic surface of the DiMaggio–Sandler model has a
more complex hydrostatic fit and constant yield surface shape. A minimum of four tests are needed to de-
fine the DiMaggio–Sandler model. At least two low confining pressure axisymmetric compression tests are
needed to locate the dilatant shear surface, which we take to correspond with the critical state line of the
Carroll model. A hydrostatic test is needed to locate the initial yield surface and to define the surface evo-
lution, and one additional high confining pressure axisymmetric compression test is needed to define the
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elliptical shape of the cap surface. The Carroll model requires three tests to define the initial shape and loca-
tion of the yield surface, the surface evolution, and the critical state line.
3. Constitutive modeling of new surface

The cap surface is modeled as an ellipse quadrant with axes at r = r0 and s = 0 (see Fig. 4), and takes the
form
Fig. 4.
vertica
F ¼ 0 ¼ s
a

� �2
þ r � r0

b

� �2
� 1; ð14Þ
with
a ¼ aðcpÞ;
b ¼ bðepÞ:

ð15Þ
Parameters a and b define the size of the yield ellipse, and increase with inelastic shear strain and inelastic
volume strain, respectively. Another yield surface is needed to model behavior below r0. A similar elliptical
surface without an intersecting shear surface was defined by Deshpande and Fleck (2000) for metallic
foams, with r0 = 0 and parameters a and b as linear functions of both measures of plastic strain. By using
(4) and (15) and taking the derivative of (14), we can determine
dcp ¼
ða � lÞdr

s
a

� �
da=dcp þ lb

r � r0

b

� �
db=dep

; ð16Þ
where the substitution
l ¼ �ðr � r0Þa2

sb2
ð17Þ
is used. Associated flow is not necessary for modeling, but for nonassociated flow, a definition is needed for
b. This modeling can be used for any loading path.

3.1. Determining model parameters

A minimum of three tests are needed to define the model. A hydrostatic test is used to find the initial
hydrostatic yield stress, b0, and to fit the relation khydro = db/dep. Two additional tests are needed to locate
τ
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Ellipse model layout in differential stress versus mean compressive stress coordinates. The model is centered at (r0,0). The
l axis length, a, is a function of inelastic shear strain, and the horizontal axis length, b, is a function of inelastic volume strain.
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r0 and the initial condition a0 and to define a relation da/dcp. For other cap models, the shear and cap
surfaces are often assumed to intersect at the cap peak (e.g. DiMaggio–Sandler model), but this is not nec-
essary. If the surfaces do not intersect at the cap peak, however, determination of r0 and a0 may be
difficult.

The relation da/dcp is determined most easily with a constant mean stress test, where the confining pres-
sure is reduced properly as the axial load is increased, allowing an increase in differential stress without a
change in mean stress. This loading direction gives a direct measure of the traditionally used plastic hard-
ening modulus in shear, hELL, and (16) can be simplified for this case as
ds
dcp

¼ s
a

� �
da=dcp þ lb

r � r0

b

� �
khydro ¼ hELL ð18Þ
and fit to the data curve. The volumetric plastic hardening modulus is
kELL ¼ r � r0

b

� �
khydro þ

1

lb

� �
s
a

� �
da=dcp: ð19Þ
The hardening modulus for this model, unlike (8) and (12), can decrease to zero without applying
khydro = 0. This is valuable, because softening in shear, correlating with da/dcp < 0, may be reasonable
for high porosity sandstones, but hydrostatic softening is not generally observed.

To help display the capabilities of the model, some special cases will be considered. First, linear plastic
flow along each axis is discussed. Perfectly plastic behavior along either axis is also considered.
3.2. Linear plastic flow

If we assume a linear hardening law along each axis of the form
da ¼ C1 dcp;

db ¼ C2 dep;
ð20Þ
Eqs. (4) and (16) simplify to
da ¼ ða � lÞdr
s
a
þ clb

r � r0

b

;

b ¼ � 1

c
db=da;

ð21Þ
where the substitution
c ¼ C2=C1 ð22Þ
is used. Parameter c gives a hardening ratio between the linear flow laws. Cases where either axis is station-
ary, corresponding to a hardening ratio of zero or infinity, are considered in the next section.

Fig. 5 shows the evolution of the yield surface for different stress paths beginning at r0. For the plots
shown, R0 = 1 and c = 1. All final yield surfaces occur after the same amount of radial loading from r0.
The endpoints each have a different final yield surface, due to path dependency. Isotropic hardening occurs
along a = 1. Loading along the paths a ! 1, the constant mean stress path at r0, and a = 0, the hydrostat,
result in surface movement along the nearest axis only. The increase in a is greater along the path a ¼

ffiffiffi
3

p
,

corresponding to a standard axisymmetric compression test, than either the isotropic loading path or the



Fig. 5. Evolution of the ellipse model yield surface during loading in different stress directions from the ellipse center, r0. Note that the
a = 1 sample displays isotropic hardening, and that the final length a is greater for the standard axisymmetric stress path a ¼

ffiffiffi
3

p
than

the path along the axis or the isotropic direction. For these plots, a0 = b0 and c = 1.
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path along the axis. This results in greater inelastic shear strain for the axisymmetric test than the other
tests.

3.3. Perfectly plastic hydrostatic behavior

If a material displays plastic hardening much more readily in shear than hydrostatically, equivalent to a
hardening ratio near zero, the parameter b can be modeled as perfectly plastic, or constant. Because only
one deformation parameter is active, all points with the same inelastic shear strain will lie along the same
yield surface. In addition, differing positive loading paths reaching the same point in stress space will lie
along the same yield surface. The dilatancy factors at this point in the tests will be equal, but the ratio
of accumulated inelastic strains will not.

Fig. 6 shows the response for samples loaded along axisymmetric compression paths starting at different
hydrostatic stresses. Fig. 6a shows the evolution of the yield surface in differential stress–mean compressive

stress coordinates. The endpoints were selected to lie along the same yield surface. The mean compressive
stress versus inelastic volume strain response is shown in Fig. 6b. The inelastic shear strains are equal at the
endpoints. Tests at higher confining pressures display a flatter response and require larger inelastic volume
strains to reach the final surface.
(a)
(b)

Fig. 6. Ellipse model behavior when only the vertical axis deforms. Plots are normalized by the size of the initial yield surface and
magnitude of the shear parameter da/dcp. For these plots, a0 = b0. (a) Evolution of the yield surface for standard axisymmetric
compression tests. All endpoints lie on the same yield surface. (b) Mean stress versus inelastic volume strain behavior. All tests have the
same final inelastic shear strain, but different inelastic volume strains.
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Fig. 7. Ellipse model behavior when only the horizontal axis deforms. Plots are normalized by the size of the initial yield surface and
the magnitude of the hydrostatic parameter khydro. For these plots, a0 = b0. (a) Evolution of the yield surface for standard axisymmetric
compression tests. All endpoints lie on the same yield surface. (b) Mean stress versus inelastic volume strain behavior. Note that all
tests have the same final inelastic volume strain.
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3.4. Perfectly plastic shear behavior

If a material displays much more plastic hardening hydrostatically than in shear, equivalent to a nearly
infinite hardening ratio, parameter a can be modeled as constant. Fig. 7 shows the modeled behavior for
loading along axisymmetric compression paths starting at different hydrostatic stresses. Fig. 7a shows
the evolution of the yield surface, with all tests ending along the same final yield surface. As can be seen
in Fig. 7b, the inelastic volume strains are equal at the endpoints. Tests at lower confining pressures display
a flatter response.
4. Localization along cap surface

Strain localization is an allowable bifurcation from uniform flow when the hardening modulus falls be-
low the critical value for a band orientation. The critical volumetric plastic hardening modulus for compac-
tion localization along a surface, but not at the intersection of surfaces, is (Rudnicki, 2004)
kcr
G

¼ 1þ t
9ð1� tÞ

ffiffiffi
l
b

r
�

ffiffiffi
b
l

s !2

�

ffiffiffiffiffiffi
3

lb

s
þ

ffiffiffi
l
b

r
þ

ffiffiffi
b
l

s ! !2
2
4

3
5 ð23Þ
when simplified for axisymmetric loading. This result can also be obtained from the plastic hardening mod-
ulus in shear given by Issen and Rudnicki (2000) with the substitution hcr = lbkcr. Behavior at the intersec-
tion of yield surfaces is more complex (Issen, 2002; Challa and Issen, 2004), and is not considered here.
Once the hardening modulus decreases to the critical value, compaction localization is expected.

Shear bands have a different critical hardening modulus. The orientation with the highest critical value is
expected to occur first. If localization occurs, compaction bands are the predicted orientation if
l þ b < �
ffiffiffi
3

p
: ð24Þ
Otherwise, for cases along a cap surface, shear localization is the predicted orientation.
Associated flow is often assumed along cap surfaces, but nonassociated flow may be applicable away

from the hydrostatic axis. Both the DiMaggio–Sandler and the Carroll models employ associated flow,
but nonassociated flow of the form
b ¼ Al; ð25Þ

where A is a positive constant, could be inserted without problem. Flow of this form still allows a critical
state approach at the yield surface peak, as l = b = 0 at the peak. We assume flow of the form (25), where
A = 1 for associated flow. Using this form, relation Eq. (24) can be simplified to the form
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l <
�

ffiffiffi
3

p

1þ A
ð26Þ
for compaction bands. Considering Eqs. (4), (13), and (17), compaction localization is predicted over a
greater portion of the cap if the ratio of the cap height to cap width is larger. If the volumetric plastic hard-
ening modulus goes to zero, compaction localization is predicted only when the critical hardening modulus
is above zero. From (23) and (25), this occurs when
�
ffiffiffi
3

p

2
< l < �

ffiffiffi
3

p

2A
ð27Þ
and A > 1. If 0 < A < 1, the above inequalities are reversed. Considering (26) and (27), the criteria for
compaction localization can be defined as
�
ffiffiffi
3

p

2
< l < �

ffiffiffi
3

p

Aþ 1
ð28Þ
for A > 1, as shown in Fig. 8, and
�
ffiffiffi
3

p

2A
< l < �

ffiffiffi
3

p

Aþ 1
ð29Þ
for 0 < A < 1.
For associated flow, the maximum critical hardening modulus is zero at l ¼ �

ffiffiffi
3

p
=2. Considering Eqs.

(8) and (12), the Carroll and DiMaggio–Sandler models can only predict localization when khydro = 0.
Experimental results for high porosity sandstone show compaction localization when the hydrostatic mod-
ulus is small, but greater than zero (Wong et al., 2001). As shown in (19), the new elliptic surface allows a
negative or zero plastic hardening modulus with a positive khydro and a softening response in shear. Soft-
ening in shear may be applicable in high porosity sandstones.

For the proposed model, as seen in Fig. 6a, a stronger hardening response in shear results in a steeper
yield surface, and a steeper yield surface predicts compaction localization over a greater portion of the cap.
At the same time, a hardening response in shear is resistant to localization. A complex shear response, with
initial hardening followed by shear softening, would best meet localization criteria over a large portion of
the cap.
0 1
0

1

σ / b

τ 
/ a

SB
CB

Regions predicting shear bands (SB) and compaction bands (CB) for perfectly plastic behavior on an elliptical surface with an
ratio of one and A = 5.
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5. Model comparison

An example with more realistic hydrostatic behavior will be used to compare the models. Fig. 9 shows a
hydrostatic curve similar to the experimental response of Adamswiller sandstone (Wong and Baud, 1999).
Behavior is modeled as elastic until r1, and the hydrostatic plastic hardening modulus follows the form
Fig. 9
respon

Table
Mater

Proper

Initial

Initial

Initial

Slope
khydro ¼ Bðep � e0pÞ
2 þ Cep: ð30Þ
Using reasonable values for material constants (see Table 1), the plastic hydrostatic response was put
into the Carroll and DiMaggio–Sandler models. The models were used to predict the response for a set
of axisymmetric compression tests at differing confining pressures, and were run until loading reached
the cap peak. Figs. 10a and 11a show the mean stress versus total volume strain response for each of
the axisymmetric tests, along with the hydrostatic response. Each test displays �shear assisted compaction�
(Wong et al., 2001). For the Carroll model, tests at lower confining stresses display a steeper slope during
early plastic strain. For the DiMaggio–Sandler model, tests at higher confining pressures display a steeper
slope during early plastic strain. The Carroll model curves are significantly steeper than the DiMaggio–San-
dler model curves for all samples. Both models predict stiffening at large plastic strains. If we compare these
results to the experimental results for Adamswiller sandstone, loading reaches the peak of the Carroll model
at a smaller total strain than was observed for the low confining stress sample. Loading reaches the peak of
the DiMaggio–Sandler model at a similar strain to observed failure. All the other samples failed without
stiffening. The flatter curves at low confining stress and flatter overall axisymmetric response of the DiMag-
gio–Sandler model make it a better fit for this set of sandstone data. Plots of the volumetric plastic
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ε total

σ 
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P
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σ1
=

. Hydrostatic response approximation. Elastic response is predicted until r1 = 200 MPa. After a period of weak inelastic
se, the material stiffens.

1
ial constants used in Figs. 10–12, elastic bulk modulus: 6500 MPa

ty Carroll model DiMaggio–Sandler model Ellipse model

location of yield surface (MPa) pc0 L0 r0
75 75 75

height of yield surface (MPa) sc0 f0 b0
72.2 72.2 72.2

width of yield surface (MPa) p* R (width = R*f) a0
125 1.73 125

of shear surface m f 0 N/A
0.87 0.87



(a) (b)

Fig. 10. Predicted response for axisymmetric compression tests at the given confining pressures using the Carroll model. (a) Mean
stress–volumetric compressive strain response. The top curve is the hydrostatic response. (b) Plastic hardening modulus at each
confining pressure.
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(a) (b)

Fig. 11. Predicted response for axisymmetric compression tests at the given confining pressures using the DiMaggio and Sandler
model. (a) Mean stress–volumetric compressive strain response. The top curve is the hydrostatic response. (b) Plastic hardening
modulus at each confining pressure.
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Fig. 12. Predicted response for axisymmetric compression tests at the given confining pressures using the ellipse quadrant model. (a)
Mean stress–volumetric compressive strain response. The top curve is the hydrostatic response. (b) Plastic hardening modulus at each
confining pressure.
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hardening moduli for both models are shown in Figs. 10b and 11b. Because the hardening moduli (8) and
(12) depend on (30), the moduli reach a minimum when khydro is small. Both models predict lower volumet-
ric hardening moduli at the higher confining stresses.

For the ellipse quadrant model, using the same hydrostatic fit (30), assuming associated flow, and hold-
ing parameter a stationary fits the data well. As can be seen in Fig. 12a, the initial slopes of the axisymmet-
ric curves at high confining stress are slightly flatter than those of the DiMaggio–Sandler model. The curves
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are steeper at higher confining pressures and are relatively flat, similar to the experimental results for
Adamswiller sandstone. Stiffening at large plastic strains, predicted by the other models but not observed,
is not predicted.

The volumetric plastic hardening modulus for the ellipse model (see Fig. 12b) is less than that of the
DiMaggio–Sandler Model by an order of magnitude at the minima. A lower hardening modulus is pre-
dicted at lower confining stresses, unlike in the other models. This shows better agreement with the obser-
vation that localization usually occurs at intermediate confining pressures (Holcomb and Olsson, 2003). A
more complex response for parameter a, with softening at large plastic strains, could be applied, and would
yield a hardening modulus below zero. Axisymmetric tests with the mean stress held constant would help to
properly constrain parameter a.
6. Conclusions

The proposed yield surface can accommodate complex deformation behavior. Previous models em-
ployed a single deformation criterion, allowing the yield surface to expand, translate, or expand and trans-
late at a fixed ratio. With two yield parameters, the proposed surface can change in aspect ratio as it
deforms. Non-associated flow is allowed, leaving the plastic strain ratio unrestricted.

In the simplified cases examined, one of the axes displays much greater hardening than the other. This
reduces the model to a single deformation criterion. In this case, different positive loading paths to the same
point in stress space would lie along the same yield surface. In cases where two deformation parameters are
active, loading along different paths will result in different yield surfaces and different accumulations of
plastic strain.

Both compaction and shear localization can be predicted along regions of the elliptic cap. Associated
flow restricts localization, but localization is predicted at l ¼ �

ffiffiffi
3

p
=2 when the hardening modulus is below

zero. With increasing non-normality, both compaction bands and shear bands are predicted in growing re-
gions extending further up the cap. Non-normality also allows localization when the hardening modulus is
positive.

The aspect ratio of an elliptic yield surface is critical to localization predictions. Steep cap surfaces pre-
dict compaction localization over a greater portion of the cap. A vertical flat cap would predict compaction
bands as the preferred orientation along the entire cap. Published observations of localization behavior for
high porosity sandstones generally display compaction localization on cap areas near the transition be-
tween shear localization and compaction localization predictions. A constitutive model that allows the
cap to become steeper under continued loading may better predict the localization mode.

The new model allows the plastic hardening modulus to become zero or negative without a flat hydro-
static response. Previous models employing only one inelastic deformation parameter required a flat hydro-
static response, which is not observed in experiments. This feature allows the prediction of compaction
localization without requiring nonassociated flow. Tests in nontraditional stress paths would help to better
constrain the hardening modulus.
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